3.343 \(\int \frac {7+5 x^2}{(2+x^2-x^4)^{3/2}} \, dx\)

Optimal. Leaf size=55 \[ \frac {x \left (13 x^2+25\right )}{18 \sqrt {-x^4+x^2+2}}+\frac {17}{6} F\left (\left .\sin ^{-1}\left (\frac {x}{\sqrt {2}}\right )\right |-2\right )-\frac {13}{18} E\left (\left .\sin ^{-1}\left (\frac {x}{\sqrt {2}}\right )\right |-2\right ) \]

[Out]

-13/18*EllipticE(1/2*x*2^(1/2),I*2^(1/2))+17/6*EllipticF(1/2*x*2^(1/2),I*2^(1/2))+1/18*x*(13*x^2+25)/(-x^4+x^2
+2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 55, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {1178, 1180, 524, 424, 419} \[ \frac {x \left (13 x^2+25\right )}{18 \sqrt {-x^4+x^2+2}}+\frac {17}{6} F\left (\left .\sin ^{-1}\left (\frac {x}{\sqrt {2}}\right )\right |-2\right )-\frac {13}{18} E\left (\left .\sin ^{-1}\left (\frac {x}{\sqrt {2}}\right )\right |-2\right ) \]

Antiderivative was successfully verified.

[In]

Int[(7 + 5*x^2)/(2 + x^2 - x^4)^(3/2),x]

[Out]

(x*(25 + 13*x^2))/(18*Sqrt[2 + x^2 - x^4]) - (13*EllipticE[ArcSin[x/Sqrt[2]], -2])/18 + (17*EllipticF[ArcSin[x
/Sqrt[2]], -2])/6

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 524

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-(b/a), -(d/c)]))))))

Rule 1178

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(a*b*e - d*(b^2 - 2*
a*c) - c*(b*d - 2*a*e)*x^2)*(a + b*x^2 + c*x^4)^(p + 1))/(2*a*(p + 1)*(b^2 - 4*a*c)), x] + Dist[1/(2*a*(p + 1)
*(b^2 - 4*a*c)), Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 7)*(d*b - 2*a*e)*c*x^2, x]*(a +
 b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1180

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[2*Sqrt[-c], Int[(d + e*x^2)/(Sqrt[b + q + 2*c*x^2]*Sqrt[-b + q - 2*c*x^2]), x], x]] /; FreeQ[{a, b, c,
d, e}, x] && GtQ[b^2 - 4*a*c, 0] && LtQ[c, 0]

Rubi steps

\begin {align*} \int \frac {7+5 x^2}{\left (2+x^2-x^4\right )^{3/2}} \, dx &=\frac {x \left (25+13 x^2\right )}{18 \sqrt {2+x^2-x^4}}-\frac {1}{18} \int \frac {-38+13 x^2}{\sqrt {2+x^2-x^4}} \, dx\\ &=\frac {x \left (25+13 x^2\right )}{18 \sqrt {2+x^2-x^4}}-\frac {1}{9} \int \frac {-38+13 x^2}{\sqrt {4-2 x^2} \sqrt {2+2 x^2}} \, dx\\ &=\frac {x \left (25+13 x^2\right )}{18 \sqrt {2+x^2-x^4}}-\frac {13}{18} \int \frac {\sqrt {2+2 x^2}}{\sqrt {4-2 x^2}} \, dx+\frac {17}{3} \int \frac {1}{\sqrt {4-2 x^2} \sqrt {2+2 x^2}} \, dx\\ &=\frac {x \left (25+13 x^2\right )}{18 \sqrt {2+x^2-x^4}}-\frac {13}{18} E\left (\left .\sin ^{-1}\left (\frac {x}{\sqrt {2}}\right )\right |-2\right )+\frac {17}{6} F\left (\left .\sin ^{-1}\left (\frac {x}{\sqrt {2}}\right )\right |-2\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {\$Aborted} \]

Verification is Not applicable to the result.

[In]

Integrate[(7 + 5*x^2)/(2 + x^2 - x^4)^(3/2),x]

[Out]

$Aborted

________________________________________________________________________________________

fricas [F]  time = 0.41, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {-x^{4} + x^{2} + 2} {\left (5 \, x^{2} + 7\right )}}{x^{8} - 2 \, x^{6} - 3 \, x^{4} + 4 \, x^{2} + 4}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x^2+7)/(-x^4+x^2+2)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(-x^4 + x^2 + 2)*(5*x^2 + 7)/(x^8 - 2*x^6 - 3*x^4 + 4*x^2 + 4), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {5 \, x^{2} + 7}{{\left (-x^{4} + x^{2} + 2\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x^2+7)/(-x^4+x^2+2)^(3/2),x, algorithm="giac")

[Out]

integrate((5*x^2 + 7)/(-x^4 + x^2 + 2)^(3/2), x)

________________________________________________________________________________________

maple [B]  time = 0.01, size = 156, normalized size = 2.84 \[ \frac {19 \sqrt {2}\, \sqrt {-2 x^{2}+4}\, \sqrt {x^{2}+1}\, \EllipticF \left (\frac {\sqrt {2}\, x}{2}, i \sqrt {2}\right )}{18 \sqrt {-x^{4}+x^{2}+2}}+\frac {\frac {10}{9} x^{3}-\frac {5}{9} x}{\sqrt {-x^{4}+x^{2}+2}}+\frac {13 \sqrt {2}\, \sqrt {-2 x^{2}+4}\, \sqrt {x^{2}+1}\, \left (-\EllipticE \left (\frac {\sqrt {2}\, x}{2}, i \sqrt {2}\right )+\EllipticF \left (\frac {\sqrt {2}\, x}{2}, i \sqrt {2}\right )\right )}{36 \sqrt {-x^{4}+x^{2}+2}}+\frac {-\frac {7}{18} x^{3}+\frac {35}{18} x}{\sqrt {-x^{4}+x^{2}+2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*x^2+7)/(-x^4+x^2+2)^(3/2),x)

[Out]

10*(1/9*x^3-1/18*x)/(-x^4+x^2+2)^(1/2)+19/18*2^(1/2)*(-2*x^2+4)^(1/2)*(x^2+1)^(1/2)/(-x^4+x^2+2)^(1/2)*Ellipti
cF(1/2*2^(1/2)*x,I*2^(1/2))+13/36*2^(1/2)*(-2*x^2+4)^(1/2)*(x^2+1)^(1/2)/(-x^4+x^2+2)^(1/2)*(EllipticF(1/2*2^(
1/2)*x,I*2^(1/2))-EllipticE(1/2*2^(1/2)*x,I*2^(1/2)))+14*(-1/36*x^3+5/36*x)/(-x^4+x^2+2)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {5 \, x^{2} + 7}{{\left (-x^{4} + x^{2} + 2\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x^2+7)/(-x^4+x^2+2)^(3/2),x, algorithm="maxima")

[Out]

integrate((5*x^2 + 7)/(-x^4 + x^2 + 2)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {5\,x^2+7}{{\left (-x^4+x^2+2\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*x^2 + 7)/(x^2 - x^4 + 2)^(3/2),x)

[Out]

int((5*x^2 + 7)/(x^2 - x^4 + 2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {5 x^{2} + 7}{\left (- \left (x^{2} - 2\right ) \left (x^{2} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x**2+7)/(-x**4+x**2+2)**(3/2),x)

[Out]

Integral((5*x**2 + 7)/(-(x**2 - 2)*(x**2 + 1))**(3/2), x)

________________________________________________________________________________________